Sains Malaysiana 53(9)(2024): 2057-2070
http://doi.org/10.17576/jsm-2024-5309-04
Hubungan Kointegrasi dan Kebersebaban Granger
antara Sektor Utama Indeks Harga Pengeluar di Malaysia
(Cointegration and
Granger Causality Relationships between the Major Sectors of the Producer Price
Index in Malaysia)
NURULKAMAL MASSERAN*, NUR ATIQA HALIL, NORISZURA ISMAIL & MOHD SABRI ISMAIL
Jabatan
Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 30 April 2024/Diterima: 5 Julai 2024
Abstrak
Penyesuaian harga adalah salah satu faktor yang
boleh digunakan untuk mengawal kecekapan pasaran. Ia merupakan salah satu
pendekatan dalam proses pengagihan sumber, kawalan hasil pengeluaran, mahupun
pengawalseliaan kerajaan. Bagi tujuan tersebut, Indeks Harga Pengeluar (IHPR)
merupakan maklumat penting yang sentiasa dirujuk dalam proses pembuatan
keputusan dan polisi berkaitan penyesuaian harga. IHPR adalah indeks
berasaskan output yang mengukur perubahan harga komoditi untuk jualan pasaran.
Penyelidikan ini mengkaji tingkah laku kointegrasi dan hubungan kebersebaban
Granger antara pemboleh ubah dalam IHPR di Malaysia. Data kebangsaan IHPR yang
dilaporkan oleh Jabatan Perangkaan Malaysia bagi tempoh Januari 2010 sehingga Disember 2023 telah
dianalisis. Objektif kajian ini adalah untuk memahami hubungan dinamik antara
pemboleh ubah IHPR dalam konteks ekonomi negara Malaysia menerusi pendekatan
ujian punca unit, model vektor autoregresif, analisis penyebab Granger dan
kointegrasi Johansen. Hasil kajian mendapati bahawa wujud tiga hubungan satu
hala yang signifikan antara pasangan sektor-sektor IHPR iaitu; i) perubahan dalam sektor
perlombongan adalah penyebab Granger kepada sektor perubahan dalam sektor
pembuatan; ii) perubahan dalam sektor bekalan elektrik merupakan penyebab
Granger kepada perubahan dalam sektor perlombongan dan iii) perubahan dalam
sektor bekalan air merupakan penyebab Granger kepada perubahan dalam sektor
bekalan elektrik. Namun, didapati tiada hubungan kebersebaban dua hala yang
signifikan bagi perubahan antara mana-mana pasangan sektor pemboleh ubah IHPR.
Selain itu, berdasarkan ujian kointegrasi Johansen, didapati kointegrasi antara
pasangan pemboleh ubah IHPR; i) sektor pertanian-perlombongan dan ii) sektor
pertanian-pembuatan adalah signifikan. Ini mengimplikasikan bahawa kedua-dua
pasangan sektor tersebut menunjukkan tingkah laku kestabilan hubungan jangka
panjang dari aspek perubahan nilai indeks antara sektor.
Kata kunci: Hubungan kesebaban; indeks harga
pengeluar; kointegrasi; penunjuk ekonomi
Abstract
Price adjustment is one of the factors that can be
used to control market efficiency. It is one of the approaches in the process
of resource distribution, production control, or government regulation. For
that purpose, the Producer Price Index (PPI) is important information that is
always referred to in the decision-making process and policies related to price
adjustments. IHPR is an output-based index, which measures changes in commodity
prices for market sales. This study investigates the cointegration behavior and
Granger causality between the variables in the IHPR in Malaysia. IHPR national
data reported by the Department of Statistics Malaysia for the period of
January 2010 to December 2023 has been analyzed. The objective of this study
was to understand the dynamic relationship between PPI variables in the context
of the Malaysian economy through the approach of Granger causality analysis and
Johansen cointegration. The results of the study found that there are three
significant one-way relationships between pairs of IHPR sectors namely; i)
changes in the mining sector are Granger causes to the changes in the
manufacturing sector; ii) changes in the electricity supply sector are Granger
causes to changes in the mining sector, and iii) changes in the water supply
sector are Granger causes to changes in the electricity supply sector. However,
it was found that there was no significant two-way causality for changes
between any pair of sectors of the IHPR variable. In addition, based on
Johansen's cointegration test, cointegration was found between pairs of IHPR
variables; i) the agricultural-mining sector, and ii) the
agricultural-manufacturing sector are significant. This implies that these two
pairs of sectors show long-term relationship stability behavior from the aspect
of index value changes between sectors.
Keywords: Causality relationship; cointegration;
economic indicator; producer price index
RUJUKAN
Akkaya,
D.M. 2021. Vector autoregressive model
and analysis. In Applied Econometrics Handbook of Research on
Emerging Theories, Models, and Applications of Financial Econometrics,
disunting oleh Adıgüzel Mercangöz, B. Springer, Cham.
Anggraeni,
D. & Irawan, T. 2018. Causality analysis of Producer Price Index (PPI) and
Consumer Price Index (CPI) in Indonesia. Jurnal
Ekonomi dan Kebijakan Pembangunan 7(1): 60-77.
Anghel,
M.G., Mirea, M. & Badiu, A. 2018. Analysis of the main aspects regarding
the price indices applied in the determination of inflation. International Journal of Academic Research
in Accounting, Finance and Management Sciences 8(2): 28-36.
Arce,
P., Antognini, J., Kristjanpoller, W. & Salinas, L. 2019. Fast and adaptive
cointegration based model for forecasting high frequency financial time series. Computational Economics 54: 99-112.
Conforti,
L. 2016. The first 50 years of the producer price index: Setting inflation
expectations for today. Monthly Labor
Review 139(6): 1-17.
da
Rocha Lima Filho, R.I. 2019. Does PPI lead CPI in Brazil? International Journal of Production Economics 214: 73-79.
del
Barrio Castro, T., Cubadda, G. & Osborn, D.R. 2022 On cointegration for
processes integrated at different frequencies. Journal of Time Series Analysis 43(3): 412-435.
Hakimipoor,
N., Alipour, M.S. & Akbaryan, H. 2016. Investigation on causality relationship
between consumer price index and producer price index in Iran. Reports on Economics and Finance 2:
37-49.
Javed,
Z.H., Farooq, M. & Akram, S. 2010. Cost-push shocks and inflation: An
empirical analysis from the economy of Pakistan. Journal of Economics and International Finance 2(12): 308-312.
Jiang,
F., Awaitey, J. & Xie, H. 2022. Analysis of construction cost and
investment planning using time series data. Sustainability 14: 1703.
Keilbar,
G. & Zhang, Y. 2021. On cointegration and cryptocurrency dynamics. Digital Finance 3: 1-23.
Kelly,
M. 2013. Emily Dickinson and monkeys on the stair Or: What is the significance
of the 5% significance level? Significance 10(5): 21-22.
Khamis,
A.B. 2020. Time series forecasting of Malaysia producer price index using ARIMA
and Grey models. International Journal
for Research in Applied Science and Engineering Technology 8(8): 1343-1348.
Kumari,
A. & Sharma, A.K. 2017. Physical & social infrastructure in India &
its relationship with economic development. World
Development Perspectives 5: 30-33.
Leschinski,
C., Voges, M. & Sibbertsen, P. 2020. A comparison of semiparametric tests
for fractional cointegration. Statistical
Papers 62: 1997-2030.
Lütkepohl,
H. 2011. Vector autoregressive models.
In International Encyclopedia of Statistical Science, disunting oleh
Lovric, M. Berlin, Heidelberg: Springer.
Lütkepohl,
H. 2005. Vector error correction
models. In New Introduction to Multiple Time Series Analysis.
Springer, Berlin, Heidelberg.
Lüutkepohl,
H., Saikkonen, P. & Trenkler, C. 2001. Maximum eigenvalue versus trace
tests for the cointegrating rank of a VAR process. The Econometrics Journal 4(2): 287-310.
Masseran,
N., Ruzelan, N. & Nur-Firyal, R. 2024. Trend behavior of Malaysia consumer
price index: Evidence from National Database (2003-2022). Sains Malaysiana 53(4): 953-967.
Masseran,
N., Ahmad Farouk, S.N., Nur-Firyal, R. & Mansor, M. M. 2024. Latent hidden factor model for Malaysia
consumer price index. Sains Malaysiana 53(4): 969-982.
Matsumura,
M. 2022. What price index should central banks target? An open economy
analysis. Journal of International
Economics 135: 103554.
Meyer,
D.F. & Habanabakize, T. 2018. Analysis of relationships and causality
between consumer price index (CPI), the producer price index (PPI) and
purchasing manager’s index (PMI) in South Africa. Journal of Economics and Behavioral Studies 10(6): 25-32.
Naidu,
S., Pandaram, A. & Chand, A. 2017. A Johansen cointegration test for the
relationship between remittances and economic growth of Japan. Modern Applied Science 11(10): 137.
Neusser,
K. 2016. Time Series Econometrics.
Cham, Switzerland: Springer.
Okyere,
F. & Kyei, L. 2014. Temporal modelling of producer price inflation rates of
Ghana. IOSR Journal of Mathematics 10(3): 70-77.
OpenDOSM.
2023. Producer Prices.https://open.dosm.gov.my/dashboard/producer-prices (Diakses pada 20 Ogos 2023).
Paparoditis,
E. & Politis, D.N. 2018. The asymptotic size and power of the augmented
Dickey–Fuller test for a unit root. Econometric
Reviews 37(9): 955-973.
Popescu,
C.C. & Diaconu, L. 2021. Government spending and economic growth: A
cointegration analysis on Romania. Sustainability 13: 6575.
Sidaoui,
J., Capistrán, C., Chiquiar, D. & Manuel Ramos-Francia, M. 2010. On the
predictive content of the PPI on CPI inflation: The case of Mexico. Bank for
International Settlements Papers, No: 49. hlm. 249-257.
Soderlind,
P. & Vredin, A. 1996. Applied cointegration analysis in the mirror of
macroeconomic theory. Journal of Applied
Econometrics 11: 363-381.
Stigler,
S. 2008. Fisher and the 5% level. Chance 21(4): 12.
Stroe-Kunold,
E. & Werner, J. 2009. A drunk and her dog: A spurious relation?
Cointegration tests as instruments to detect spurious correlations between
integrated time series. Quality &
Quantity 43: 913-940.
Sun,
J., Xu, J., Cheng, X., Miao, J. & Mu, H. 2023. Dynamic causality between
PPI and CPI in China: A rolling window bootstrap approach. International Journal of Rinance & Economics 28(2): 1279-1289.
Swick,
R. 2004. Measuring services in the producer price index. Statistical Journal of the United Nations Economic Commission for
Europe 21(3-4): 299-308.
Thome,
H. 2015. Cointegration and error correction modelling in time-series analysis:
A brief introduction. International
Journal of Conflict and Violence 8(2): 199-208.
Topuz,
Y.V., Yazdifar, H. & Sahadev, S. 2018. The relation between the producer
and consumer price indices: A two-country study. Journal of Revenue and Pricing Management 17: 122-130.
Yussuf,
Y.C. 2021. Cointegration test for the long-run economic relationships of East
Africa community: Evidence from a meta-analysis. Asian Journal of Economics and Banking 6(3): 314-336.
Zhang,
J., Hu, W. & Zhang, X. 2010. The
relative performance of VAR and VECM model. In Proceedings of the
2010 3rd International Conference on Information Management, Innovation
Management and Industrial Engineering, Kunming, China, 26-28 November. hlm.
132-135.
*Pengarang untuk
surat-menyurat; email: kamalmsn@ukm.edu.my
|